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The MULTAN system has almost reached the limit of possible development. For complicated structures 
the starting set must be so large that even the largest computers cannot handle the number of phase 
permutations required. Another difficulty is that for some structures a correct set of phases is unstable 
under tangent-formula refinement. In the MAGLIN program now being developed initial sets of phases 
will be found for 30 or so reflexions by an application of magic integers to Karle-Hauptman determi- 
mants with the use of the Tsoucaris maximum-determinant rule. Further phases are then found by re- 
peated application of magic integers. Phase refinement is carried out by a least-squares solution of a set 
of linear equations with each Y-2 relationship represented by one equation. A novel technique is described 
whereby a set of equations involving M reflexions may be solved for the phases of only m( < M) of them. 
This leads to a considerable saving of time in running the MAGLIN process. For complicated structures 
it is expected that MAGLIN will not only be more effective than MULTAN but also considerably less 
time-consuming. 

The limits of MULTAN 

The M U L T A N  (MULtiple-solution TANgent-for- 
mula) computer program for phase determination has 
been widely used in the past few years for solving both 
centrosymmetric and non-centrosymmetric structures. 
While there may be dispute about the relative merits 
or efficacy of one method or another there can be 
little doubt that M U L T A N  is unrivalled at the pre- 
sent time in the total package of power plus con- 
venience that it offers. 

However, M U L T A N  sometimes fails and no E map 
can be found that shows a fragment, recognizable 
enough to be recycled to give the complete structure. 
The pattern of failure is rather difficult to interpret. 
In general the fewer atoms there are in the asymmetric 
unit the easier and more straightforward is the solu- 
tion but this is not always the case. While complicated 
structures with 80 or more atoms in the asymmetric 
unit have sometimes been solved with ease some of the 
difficult or unsolvable structures have had fewer than 
30 atoms in the asymmetric unit. 

The analysis of a number of M U L T A N  failures, re- 
ported by Lessinger (1976), has led to important im- 
provements in the M U L T A N  procedure but, no 
matter how M U L T A N  is modified, there are two in- 
herent limitations on its ability to solve structures. 

The first limitation concerns the size of the starting 
set. The basic aim is to use a starting set of reflexions 
small enough to give a manageable number of phase 
permutations yet large enough to lead to a strong 
development of new phase information. The CON- 
VERGENCE procedure has been designed to achieve 
this but it is nevertheless sometimes impossible to do 
and it is found that one or more weak links exist in 
the phase-development chain. Of course, this can usu- 

ally be corrected by increasing the size of the starting 
set but the penalty is an increase by a factor of four 
(sometimes two) in the computer time required for 
each extra reflexion. This price soon becomes too penal 
for even the most powerful computers. 

While the phase-permutation procedure is an in- 
trinsic component of the present M U L T A N  system 
it could be replaced by a more efficient alternative. 
But that would still leave the other, more important 
and rather more basic limitation, the use of the tangent 
formula itself. The alarming fact is that for some struc- 
tures even the true phases are unstable under the pro- 
cess of tangent-formula refinement. While this is fre- 
quently observed for structures with no translational 
symmetry, where phases can all steadily drift towards 
zero, it has also been found for structures with space 
groups such as Pca21, P21 etc. (Lessinger, 1976). 

Although M U L T A N  remains an extremely useful 
system and while further improvements of it may still 
be possible it must be recognized that any new leap 
forward in automated direct methods will require a 
radical reappraisal of the whole process of phase deter- 
mination. 

Such a process of reappraisal has been in progress 
for about two years and has led to a number of novel 
ideas for phase determination. The assembly of these 
ideas into a new system of phase determination will 
now be described. 

The starting-set problem 

There has been very rapid progress in the use of magic 
integers in the recent past (White & Woolfson, 1975; 
Declercq, Germain & Woolfson, 1975; Taylor & 
Woolfson, 1975). It is easy to interpret the use of magic 
integers as a way of obtaining larger starting sets. A 
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typical magic integer approach would consist of: 
(i) Select, say, 15 reflexions of large E and represent 

their phases by elements of the matrix {na,nz,n3, 
ng, ns} (xyz) where the n's are magic integers. 

(ii) By the use of single strong relationships involving 
two of the basic set of 15 reflexions, represent the 
phase of various third reflexions by magic inte- 
gers. 

(iii) For the complete set of reflexions represented in 
magic-integer form find all the ~"~2 relationships 
[other than those used in stage (ii)] and construct 
a ~ map 

~(x,y,z)= ~, t%cos {2rc(Hrx+ K~y+L.z+b.)} (1) 
r = l  

and enantiomorph are defined as follows" 

IEhl h k 1 Phase 
2"55 3 3 0 90 ° 
1"73 1 0 5 90 ° 
2.54 0 2 23 180 ° 
1"61 0 1 6 90 ° 

Ten reflexions (primary set) have their phases rep- 
resented by magic integers as {3 5 7 11 19} (x v) as 
shown in Table 1. The phases of other reflexions (sec- 
ondary set) appearing in the determinant are ex- 
pressed in magic-integer form through linkage with 
two of the above in a E2 relationship. These linkages 
are shown in Table 2. 

where there are m relationships with weights ~:r 
and Hrx + K~y + L~z + b, is the magic-integer repre- 
sentation of the sum of three phases in the rela- 
tionship. 

The peaks of the ~O map give values of (xyz) which 
translate into probable sets of phases for all the re- 
flexions considered in (i) and (ii). Typically one may 
find 50-100 possible sets of phases for 25-40 reflexions 
and experience shows that one, if not several, of the 
sets usually gives a good approximat.ion to the correct 
phases. This is a vastly superior procedure to phase 
permutation. It is not an expensive operation - two 
or three minutes on even a modest computer - but 
i t  is orders of magnitude more efficient than the pres- 
ent M U L T A N  practice. 

A magic-integer approach of great promise involves 
the use of Kar le -Hauptman determinants (Karle & 
Hauptman, 1950). One of these determinants is of the 
form 

Eo Eh 1 Eh2 Ehn 
E-h 1 Eo Eh2 -hl Ehn-ht 
E-h 2 Eh 1 -h2 Eo Ehn-h2 

E-hn Ehl -hn Eh2-h, EO (2) 

This determinant is real, must be non-negative but, 
in addition, de Rango (1969) and Tsoucaris (1970) have 
shown that the most probable set of phases for the 
reflexions in the determinant is that which maximizes 
its value. As an example, for a determinant of order 
eight there are 28 separate elements. Main (unpub- 
lished) has designed a computer algorithm for finding 
determinants such that the average magnitude of the 
elements is as large as possible but also giving as few 
as possible independent involved E's. 

As an example of the application of the method we 
take lithocholic acid (C24H3o03) (Arora & Bates, 
1977). The space group is P212121 with Z = 4 .  The 
chosen determinant is illustrated in Fig. 1. The origin 

Table 1. Magic-integer representation of the ten 
reflexions in the primary set 

IEhl h k 1 Symbol IEhl h k 1 Symbol 
3" 11 1 1 12 3x 2"99 ?. 4 1 33' 
2"38 2 1 6 5x 2"77 2 3 17 5y 
2.28 2 4 11 7x 2.15 0 0 1--0 7y 
2.16 1 T T 1 lx 2.01 1 T 1T 1 ly 
1-65 ] 2 17 19x 1.78 1 0 6 193; 

The value of the determinant, D8 (x,y), is now a 
function of x and y and this is evaluated and output 
by a computer as a grid of numbers. The peaks of 
this map give values of (x,y) which can be translated 
into phases for each of the reflexions. These phase 
sets can then be refined by a method due to Main. 
The technique is based on matrix algebra and simul- 
taneously modifies all the phases in the determinant 
by maximizing the largest eigenvalue of the associated 
matrix. The determinant is finally recalculated and its 

0,0,0 10.6 0,0,1"0 2.2 2,4,~ 2.311,1",~ 2.0 1,0,5 1.7 2,4,1 3.0 0,1,6 1.6 1,1,12 3.1 

0 7y 180-7x 11y 270 3y 90 3x 

0,0,0 10.6 2,4,1 3.0! 1,1,1 2.2 1,0,5 1.7 2,4,112-3 0,1,16 0.8 1,1, 22 0.4 

0 180-3y 11x 90 7x 90-7y 180.11x 

0,0,0 10.6 3,5,0 2.6 1,~.,6 1.3 0,0,12 1.2 2,3,172.8 3,3,231.1 

0 90 7x÷90 3y.7x.180 5y 270 

0,0,0 10'6i2.1,6 2'4 3,5,12 1'31".2,17 1'7 0,2,23 2'5 
0 5x -8y  19x 180 

0,0,0 10.6 1,4,6 1"3 1,1,1 1 2"0 2,1,17 1"2 

0 7x ÷ 270 11y 3x * 90 

0,0,010- 6 2,3,5 1.4 !3,3,11 1"4 

0 90-3y  3x -3y  

0,0,0 10"6 1,0,6 1" 8 

0 19y 

0,0,0 10"6 

0 

Fig. 1. A Karle-Hauptman determinant of order eight for lithocholic 
acid. Each element shows the indices, value of IEI and represen- 
tation of phase in magic-integer form or in degrees. 
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value used to give an order of merit to the phase sets 
under consideration. 

For lithocholic acid the top seven peaks of the deter- 
minant map were considered as significant and after 
refinement five of the sets gave very high values for 
the determinant. Of these five, two corresponded to 
reasonably small weighted average phase errors 

Experience so far with determinants has been very 
encouraging. They seem to have a tremendous reserve 
of discriminating power for correct phase sets which 
can cope with even the crudeness of magic-integer 
phase representation. Frequently it is found that the 
highest peak in the determinant map corresponds to 
a reasonable set of phases and when the top peak does 
not give good phases then they are usually given by 
one or more of the top few peaks in ranking order of 
peak magnitude. 

Further improvements in 'magic determinants' are 
indicated by recent tests. Sequences of magic integers 
can now be used which are optimized in the sense that, 
while keeping the integers reasonably small, large 
numbers of phases can be represented with acceptable 
errors and with expected errors uniformly spread out 
over the represented phases (Main, unpublished). 
Using the power of the latest computers this makes 
possible the use of 'magic determinants' of order 20 
or more. 

There is no doubt that at this time, by the use of 
magic integers, the 'starting set' problem has been sub- 
stantially solved. The crudest applications of magic 
integers are appreciably better than phase permutation 
and much more sophisticated and effective methods 
of application are under active development. 

Refining phases 
The tangent formula has long served the needs of the 
direct-methods practitioner wishing to extend phase 
information or to refine a set of phases to self-con- 
sistency. We shall now consider an alternative pro- 
cedure for using E2 relationships to refine phases. 

A typical triple-phase relationship may be written as 

(/01 -+- q92 -Jr- q)3 + b ~ 0  mod(2r0. (3) 

If phases are expressed in cycles then this becomes 

~ol +~o2 ±~o3 + b ~ 0  mod(1) (4) 

o r  

q~l ----- (P2----- q~3 + b ~ n  (5) 

where n is some integer. The symbol ,~ should be 
interpreted as 'tend to be close to' in these equations. 

If there is a set of m q;s related by q relationships 
then these may be expressed as 

q~l,s+__qOz,s+_q)3,s+bs~ns ( S =  ] to q). (6) 

Normally q > m in any case of interest and for some 
set of correct q~'s the n's will tend to cluster around 
some set of unknown integers. 

It can be shown that m of the integers, corresponding 
to the right-hand sides of m linearly-independent re- 
lationships can be chosen arbitarily (as zero for ex- 
ample). This comes about because phases are not de- 
fined exactly but are subjected to the '2re ambiguity'. 

Now let us suppose that we have a set of nearest 
integers (N.I's) - do these enable us to get estimates 
for the phases? The answer is that they do and that 
one gets good estimates for phases from a least- 
squares solution of the linear equations (6) with = re- 
placing ~ .  

This may be illustrated by taking as an example 
some data from lithocholic acid. Reflexions are indi- 
cated by code numbers and the origin and enantio- 
morph were fixed by 

Code Phase 
2 270 
3 90 
4 90 

91 90. 

An additional 31 reflexions were taken and the 35 
phases in the complete set were linked by 67 triple- 
phase relationships. From a CONVERGENCE map 
it appeared that it would be necessary to know one 
extra phase to determine all the others and this was 

Table 2. L&kages of  phases - the primary set giving phases of  the secondary set 

IEal h k I h 
1.37 ~o(3 3 11)~o( I  
1.35 ~o(2 3 5) ~ ~o(0 
1.31 ~0(i 4 6) ~ q)(2 
1.28 q~(3 5 12)~q~(2 
1.18 q~(0 0 12)~0(2  
1.15 q0(2 1 17) q0(1 
1.05 q~(3 3 23) q~(O 
0.84 ~o(0 1 16) ~o(0 
0.40 q~(1 1 22) q~(O 

k l  h k l  
1 12)(3x) +q9(2 4 1 ) ( - 3 y )  
1 6) (90 ° ) +q~(2 4 1 ) ( - 3 y )  
4 l l ) (7x )  +~o(1 0 3)(270 ° ) 
4 1)(3y) +q~(T 1 a l ) ( - l l y )  
4 1)(3y) +~o(2 3, 11) (7x+180  °) 
1 12)(3x) +q~(1 0 5) (90 ° ) 
2 23) (180°)+qo(3 3 0) (90 °) 
1 6)(90 ° ) +q~(0 0 1 0 ) ( - 7 y )  
2 23)(180°)+q~(1 1 1)(llx) 

Symbol 
3x - 3y 
90 ° - 3y 
7x + 270 ° 
- 8 y  
3 y + 7 x +  180 ° 
3x + 90 ° 
270 ° 
90 ° - 7y 
180 ° + 1 lx  
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for reflexion 39. The true phase of this reflexion is 
210 ° but, in accordance with the MULTAN philoso- 
phy, it was considered with the four possible values, 
45, 135, 225 and 315 ° . 

The first few phase relationships are shown below 
with constant angles shown in cycles. 

@39+0"375,,~n 1 (0"96) x=5"00 
@ 5 - @ 3 9 - @ 4  ~ n  2 (0"11) 3"94 
@6 - (103 -Jv @5 ,~ n 3 (0"95) 3"64 
@7 +@3 -@4 ~n4 (0"92) 3"66 
@7 - @39- @6 ~,~ n5 (0"08) 2"70 
@8 - @2 -It- @6 ,~n 6 (-0"85) 3"42 
(/99--@2--@5 ~,~,n 7 (0"01) 3"17 
@9 -- @3 -- @8 ~, n8 (1-06) 3"04 
@1o--@6 q-@8 +0"500~n9 (2"03) 3"31 
@1o+@5 +@9 "~nlo (1"13) 2"99. 

The first of these equations corresponds to @39 ~,~ 225° 
and the rc value is an arbitary one but made to cor- 
respond to a strong relationship. Sincethe phases are 
known it is possible to calculate the actual values of 
the invariants and these values are shown in brackets. 
For the complete set of relationships they have a usual 
wide range of values and of the 67 relationships five 
deviate by more than 0.25 from integers. 

Next the relationships are expressed as linear equa- 
tions with weights x and right-hand sides made equal 
to the nearest integer. Thus the second relationship 
appears as 

3"94@5 - 3"94@39 - 3"94@4 = 0 (7) 

and the ninth relationship as 

3"31@1o-3"31@6+3"31@8+3-31 x(0-5)=3"31 x2  (8) 

o r  

3"31@1o- 3"31@6 + 3"31@8 =4"965. (9) 

The complete set of equations, in matrix algebra 
notation is 

A@=C (10) 

with least-squares solution 

@ = ( A T A ) - I A T C  . (11) 

The solution of the equations, with special phases 
taken as the nearest allowed value, is shown in Table 3. 

The mean error is 20 ° and it is interesting to note 
that if the correct phases are fed into the tangent for- 
mula and refined to self-consistency then the mean 
error is 27 ° . 

A series of experiments with the least-squares (l-s) 
equations has shown: 

(i) The errors from solving the 1-s equations are less 
than those obtained by the use of the tangent 
formula. 

Table 3. Phases found for 31 lithocholic acid reflexions 
from least-squares equations with correct right-hand- 

side integers 

True Calculated 
Code phase phase Error 

39 210 235 25 
5 338 334 4 
6 95 100 5 
7 333 349 16 
8 208 183 25 
9 303 258 45 

10 90 90 0 
14 358 327 31 
11 100 67 33 
12 79 64 15 
25 63 80 17 
23 95 65 30 
20 221 254 33 
56 198 190 8 
28 94 116 22 
31 38 107 69 
26 2 12 10 
27 302 261 41 
47 224 219 5 
85 240 288 48 
66 189 175 14 
89 131 132 1 
94 319 318 1 
95 80 79 1 
77 144 146 2 
18 180 180 0 
36 256 226 30 
79 23 27 4 
74 258 287 29 
35 187 131 56 
87 180 180 0 

(ii) The 1-s equations are stable and a correct set of 
phases will not gradually drift a long way from 
true values. A cyclic refinement procedure with 
the 1-s equations consists of recalculating N.I's 
with the last estimates of @ until the N.I's no 
longer change and this seems to stabilize quite 
quickly. 

(iii) The 1-s equations have a remarkable ability to 
refine phases from values far from their true values. 

The basic MAGLIN concept 

In order to establish the background for a discussion 
of some aspects of the practical application of the least- 
squares equations, including some new theoretical 
developments, it is desirable now to give the basic 
outline of the MAGLIN (MAGic integer - LINear 
equations) phase-development scheme. 

The steps will be: 

(a) A determinant of order, say, 10-14 will be found 
containing 30-40 independent reflexions. This 
process, developed by Main, and to which ref- 
erence has already been made, starts with a very 
large determinant which is reduced by the re- 
moval of rows and columns according to various 
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criteria until a determinant of the required order 
and with the required properties is reached. This 
process has a family resemblance to the CON- 
VERGE procedure in M U L T A N .  

(b) Magic-integer phases will be assigned to all phases 
in the determinant other than those which define 
the origin and enantiomorph. The algorithm for 
this will select primary and secondary set reflex- 
ions in such a way that the number of primary re- 
flexions is kept reasonably small so that the magic 
integers do not get too great in magnitude. 

(C) The D(x,y) map will be calculated over a grid. 
An economical way of doing this has been de- 
veloped whereby the first calculation is done over 
a fairly coarse grid which is later supplemented by 
further calculations on a finer grid in regions of 
interest. 

(d) A peak-search procedure will select a number of 
the highest peaks, say 10, and the phases cor- 
responding to these will be refined by the 'maxi- 
mum-greatest-eigenvalue' criterion. 

(e) About 8-10 further reflexions will be selected, 
which link strongly with those whose phases are 
already known, and represented by magic inte- 
gers in one dimension. These extra reflexions will 
at each stage be indicated as a by-product of the 
CONVERGE-like process referred to in (a). 

(f)  For each trial set of phases a tp map will be cal- 
culated for the further reflexions by a fast-Fourier- 
transform program. A peak search program 
will find the 50 highest peaks and the phases from 
these will be calculated. 

(g) For each of the 500 (10 x 50) trial sets of phases, 
right-hand-side integers will be calculated for the 
triple-phase relationships linking all the phases in 
each set. 

(h) Each of the 500 sets of phases will be refined by 
the least-squares process. Experience shows that 
rarely is more than one cycle of refinement re- 
quired. 

(i) A sorting program will eliminate all duplicate sets 
of phases leaving only those which are significantly 
different from each other. Again, it is a matter of 
experience that this drastically reduces the number 
of phase sets to be considered. 

(j) For all remaining sets of phases various figures of 
merit will be calculated. These will include all 
those presently used in M U L T A N  plus negative 
quartets (Hauptman, 1975a, b) where available. A 
composition of these figures of merit will be made 
to establish a ranking order for the phase sets. 

(k) For the 20 top-ranking sets of phases the process 
described above from (e) will be repeated so that 
1000 sets of phases will be explored at each stage. 
This will continue until a number of phases have 
been determined sufficient to define the structure. 

(/) All the phases determined at this last stage will 
be contained in a determinant (order --, 50) found 
during process (a). For a large number of the most 

plausible final sets of phases this determinant will 
be evaluated to provide a highly sensitive figure 
of merit. 

(m) Sets of phases will be examined by the automatic 
procedures now available in the M U L T A N  sys- 
tem. 

Some practical implications of this process will now 
be considered. 

The efficient implementation of MAGLIN 

All the steps described in the M A G L I N  system are 
capable of realization. Although the future tense has 
been used in reference to many of them they are all 
tried and tested, albeit in a somewhat ad hoc manner. 
Further trials and development may well give minor 
modifications of the scheme as envisaged at present 
but major changes are unlikely and the process of 
assembling M A G L I N  into a system as sophisticated 
and as convenient to use as M U L T A N  has already 
begun. 

A characteristic of M A G L I N  that will not have es- 
caped the notice of the reader is the great 'depth-of- 
search' which is being envisaged with up to 1000 sets 
of phases being refined by the least-squares process at 
each stage. To those accustomed to M U L T A N ,  where 
to explore more than 64 sets of phases is rare, this 
number of phase sets may seem extravagant in the ex- 
treme and perhaps even impossible to handle. 

Returning to the least-squares solution of the equa- 
tions for phases, 

q~=(ATA)- aATC , (11) 

it will be noted that the only change in going from one 
phase set to the next is the column vector C. In a 
modern computer with fast-access backing store it is 
possible to evaluate, store and quickly recover the 
complete matrix 

L=(ATA) -aA  T . (12) 

It thus turns out that the major single item of time 
consumption at each stage of the phase-refinement 
process is the inversion of the matrix ArA. Thereafter, 
once the initial overhead is paid there is little penalty 
in exploring a large number of phase sets. This is in 
contrast to the use of the tangent formula where the 
cost is exactly proportional to the number of phase 
sets being developed. While the development of a 
single phase set by the least-squares method may be 
much more expensive than a tangent-formula develop- 
ment, the generation of a large number of sets is in- 
comparably cheaper. 

However it may be argued that the inversion of a 
large matrix is by no means a trivial operation, even 
on a large computer. Typically the inversion time for 
an order 300 matrix is about 4 min but the complete 
M A G L I N  process as described may require the in- 
version of a large number of matrices of steadily in- 
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creasing order, thus 20, 30,..., 40, 290, 300. Since the 
time of inversion of a matrix is proportional to the 
cube of its order it will be found that over 30 min of 
matrix-inversion time will be required. 

To solve this problem a novel process of solving 
the equations has been developed whereby the number 
of matrix inversions is greatly reduced. Consider a 
situation where there are N relationships involving 
M reflexions but estimates of phase are known only 
for m(<_M) reflexions. An individual phase relation- 
ship will, in general, involve three phases and be of the 
form 

(p p -t- fp q --]- fDr --I- b ~ O . 

We shall take a particular case 

(p3 - q~ 19 --~- (p33 --1- 0-5 ~,~ 0 

(13) 

(14) 

where the constant phase is expressed in cycles. 
If estimated values are available for all three phases, 

q~3 ~0"42, ~o19-~0"61, q~33-~0"84, 

then we find 

(/)3 -- (P19 + (P33 "{-0"5 ~ 1"15. (15) 

The equation for the least-squares solution 

is q~3 -- (/019 "~ q733 "3t- 0"5 = 1 (16a) 

o r  (/)3 - q)19 -~ (/)33 = 0"5 . (16b) 

A comparison of (15) and (16a) and an examination 
of the coefficients of ~03, q919 and rP33 leads to the con- 
clusion that equation (16b) points towards lower 
values for q)3 and q~33 and a higher value for q919. 
The final outcome for q~3 of the complete least-squares 
solution will depend, to first order, on the aggregated 
effects of all the equations involving ~03 looked at in 
this way. 

W e  now come to the treatment of a phase relation- 
ship where there is no estimate for one or more of the 
included phases. Let this be 

(/)3 -t- q?21 -[-(/)37 "~- 0"5 ~ 0 (17) 

with no estimates available for q~2t and (/937. In this 
case q02t and q737 are given arbitary values - two 
cycles has been used - to give 

q~3 -lt- q)21 -~- q~37 + 0"5--~ 4"92 (18) 
o r  

(P3 -~- q~21 'It- (/937 2__4.42. (19) 

The exact calculated value of (19) is now used as 
an element in the right-hand-side column vector C 
in equation (11). In the least-squares solution, equa- 
tion (19) will have the effect of damping down the 
tendency of ~03 to change its value but it will not in- 
troduce any systematic influence for the new value 
to be greater or less than that input. 

The technique works extremely well. The recalcu- 
lated values of the extra phases, inserted with arbitary 

values of two cycles, come out in the range 1.985- 
2.015. What is more significant is that the refined 
values of the other phases end up within a few degrees 
of these values obtained by solving a subset of equa- 
tions which exclude phases for which there are no 
estimates. Table 4 gives an example of this process 
and the results found may be compared with those in 
Table 3. 

Table 4. Phases found  for  31 lithocholic acid re- 
f lex ions  in the presence o f  10 reflexions for  which" 

there are no phase estimates 

True phase Calculated 
Code or 720 ° phase Error 

39 210 234 24 
5 338 333 5 
6 95 99 4 
7 333 349 16 
8 208 185 23 
9 303 259 44 

10 90 90 0 
14 358 326 32 
11 100 65 35 
12 79 64 15 
25 63 80 17 
23 95 66 29 
20 221 251 30 
56 198 191 7 
28 94 115 21 
31 38 103 65 
26 2 8 6 
27 302 264 38 
47 224 221 3 
85 240 287 47 
66 189 175 14 
89 131 135 4 
94 319 318 1 
95 80 80 0 
77 144 142 2 
18 180 180 0 
36 256 226 30 
79 23 28 5 
74 258 285 27 
35 187 137 50 
87 180 180 0 

83 720 715 
21 720 719 
19 720 716 
81 720 721 
88 720 725 
67 720 722 
32 720 719 
29 720 718 
73 720 718 
49 720 723 

This idea is very important for the practical im- 
plementation of M A G L I N .  Now one needs only to 
invert a few matrices and typically these may be of 
order 25~ 40, 60, 90, 135, 200, 300; the total inversion 
time is just 43~  greater than that for inverting the 
largest matrix alone. 

It turns out in practice that it is unnecessary even 
to invert a large-order matrix at all. As the process of 
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phase development proceeds certain phases stablize 
to the extent that they change only by fractions of a 
degree in going from one stage to the next. The stable 
phases are completely predictable as they can be rec- 
ognized from the magnitudes of the elements of the 
matrix L (equation 12). With such phases kept con- 
stant the order of the matrix to be inverted is much 
reduced. It should be noted that the stability criterion 
does not depend on the particular set of phases being 
refined but only on the elements of the matrix, which 
are common to all sets. It is confidently expected that 
the inversion of a matrix of order greater than 150 or 
so will only rarely be required and that matrix-inver- 
sion time may not be a significant limiting factor in 
the application of the M A G L I N  method. 

Conclusions 

Although M A G L I N  is being presented as a successor 
to M U L T A N  it is by no means certain that it will be 
a replacement - at least for some time. A survey of 
literature suggests that some 30% or more of structures 
are being solved by M U L T A N  at present and such 
a well-established method will not be lightly set aside 
until the evidence is overwhelming that the replace- 
ment is really better. 

It will take some time for M A G L I N  to evolve to 
the same state of development and reliability as 
M U L T A N  even though it will call on many existing 
M U L T A N  components such as those for normalizing 
data, fixing the origin and enantiomorph and finding 
E2 relationships. However, on the basis of the present 
evidence one may make some predictions about 
M A  G L I N  capability. 

By the use of magic determinants it should be pos- 
sible to find starting sets with at least 30 reflexions 
and with mean errors less than about 40 ° . Experience 
with M U L T A N  suggests that this size of starting set 
will be able to cope comfortably with structures with 
100 or so atoms in the asymmetric unit. This is about 
twice the size of structure which can be handled by 
M U L T A N  in a fairly routine way. On the other hand 
M U L T A N  has solved structures with about 100 atoms 
in the asymmetric unit in favourable circumstances. 

On the basis of this comparison, and a feeling for 

the power of the least-squares refinement procedure, 
it is predicted that M A G L I N  should be able routinely 
to solve structures with 100 atoms in the asymmetric 
unit and occasionally to solve structures of twice this 
complexity. 

Trials of the various elements which have come 
together to form M A G L I N  have been going on for 
about two years and have involved the collaboration 
of the author with a number of other researchers. The 
description of the individual parts, with more detail 
and theoretical background than could be given here, 
will be presented in separate papers in the near future. 
However it seemed sensible to first present a general 
overview of M A G L I N  before publication of detailed 
accounts of its various components. It is hoped thereby 
that the detailed work will be better understood and 
appreciated in the context of what is presented here. 
In the meantime the author wishes to acknowledge 
the contribution of the following who are contributing 
to the M A G L I N  project: Dr J. P. Declercq, Dr G. 
Germain, Dr P. Main, Dr P. Mondal and Mr. D. 
Taylor. 

All the separate parts of this work and also the over- 
all M A G L I N  development programme have been ge- 
nerously supported by the Science Research Council. 
Thanks are also due to the Computer  Laboratories 
of the University of York and the University of Leeds 
and to the Centre de Calcul of the University of 
Louvain-la-Neuve, Belgium. 
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